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Abstract

Computer modelling of vacuum systems is often performed using the Monte-Carlo technique. One of the

assumptions frequently made is that molecules originating at the boundaries of the system have a ‘‘cosine distribution’’.

The nature of this distribution is occasionally misinterpreted and consequently, the molecular distribution is physically

incorrect.

This article describes the main point of confusion by firstly stating the cosine law and describing one possible method

of ‘‘generating’’ the correct distribution. It goes on to describe the distribution that results from the most common

misinterpretation of the cosine law. This is illustrated by quantifying the effect on the modelled conductance for circular

cylinders of various lengths. r 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The availability of cheap and flexible computer
power has made the technique of Monte-Carlo
simulation widely accessible. However, the correct
conditions and rules that are appropriate to the
physical situation being modelled must first be
established before simulation can commence. It is
at this stage that Monte-Carlo simulations can go
wrong, particularly when the person implementing
the model is not fully conversant with any
intricacies or counterintuitive details. The author
is aware of several examples of this phenomenon
in the implementation of the cosine law for the
scattering of molecules from a surface. This paper
discusses the cosine law and demonstrates how to

implement it correctly before going on to describe
the common misinterpretation of the law and the
consequences for modelling the conductance of
tubes.

2. The cosine law

In terms of gas molecules leaving a surface, the
cosine law (sometimes called the Knudsen cosine
law) can be stated [1] as follows:

the molecular flux dn across a plane surface
element A; due to all molecules having velocity
vectors with directions within a small solid
angle do; whose axis makes an angle y with the
normal to A; is given by the cosine law formula.
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Hence

dn ¼
Nva

4

� �
1

p
Acosydo; ð1Þ

where N is the number density of molecules and
va ¼ /vS; the average molecular velocity.
Although the individual processes that result in
molecules leaving a surface do not necessarily
produce Maxwell–Boltzmann velocity distribu-
tions, for equilibrium conditions, the overall

distribution of molecular flux will obey the cosine
law (see [1], p. 20, for comment and references).

In the system of spherical polar co-ordinates
(see Fig. 1) the solid angle, do is given by

do ¼ sinydydf: ð2Þ

Hence, the expression for dn can be written in
terms of the polar and azimuthal angles ðy;fÞ

dn ¼
NAva

4p
cosysinydydf: ð3Þ

From kinetic theory [1] we have the result that the
total molecular flux N0 from A is

N0 ¼
NAva

4
: ð4Þ

Hence, the cosine law can conveniently be written
as

dn ¼
N0

p
cosysinydydf: ð5Þ

3. Angular probability distributions

Monte-Carlo modelling of the molecules in a
vacuum system involves following the progress of
a particle from its ‘‘origin’’ until some meaningful
event occurs, for example, the particle leaves the
system or it is captured. For realistic modelling,
the parameters describing the particle’s behaviour
must be chosen so that they are representative of
the real behaviour of molecules in the system. In
terms of the molecule’s scattering behaviour, this
means that the angular distribution of the particles
should be chosen so that the overall flux distribu-
tion obeys the cosine law.

The angular probability distributions for mole-
cules scattered with a cosine distribution can be
determined from Eq. (5) as follows:

3.1. Azimuthal angle

Molecules with a particular azimuth, f; occur
with a range of polar angles, y: Therefore, to
discover the azimuthal angular-probability distri-
bution function, f ðfÞ; which is the probability that
a molecule will have a velocity vector of any allowed
y value in the azimuthal angular range f2fþ df;
Eq. (5) should be integrated over all y to determine
the molecular flux dnf in this range, i.e.

dnf ¼
N0

p
df

Z p=2

0

cosysinydy: ð6Þ

The integral evaluates to 12; hence after rearrange-
ment, we can specify

f ðfÞ ¼
1

N0

dnf

df
¼

1

2p
: ð7Þ
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Fig. 1. In the spherical polar co-ordinate system, the direction

of a vector, v; is described by the polar angle y and the

azimuthal angle f: In this system y is defined by the angle

between the vector and the normal to some reference plane (for

example the plane surface element A) whereas f is defined by

the angle in the reference plane between a reference direction

and the projection of v onto the plane.
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3.2. Polar angle

Molecules with a particular polar direction, y;
occur with a range of azimuthal angles, f; there-
fore, to discover the polar angular-probability
distribution function, gðyÞ; Eq. (5) should be
integrated over all f; i.e.

dny ¼
N0

p
cosysinydy

Z 2p

0

df; ð8Þ

i.e.

dny ¼ 2N0cosysinydy: ð9Þ

Therefore

gðyÞ ¼
1

N0

dny

dy
¼ 2cosysiny ¼ sin2y: ð10Þ

Thus gðyÞ dy gives the fraction of molecules that
have velocity vectors between y and yþ dy:

4. ‘‘Generation’’ of angular distributions

Random number generation of the angular
distributions of Eqs. (7) and (10), to produce a
cosine distribution of molecular flux can be
achieved in a number of ways.

4.1. Azimuthal angle

Generating the azimuthal angle is mathemati-
cally trivial. The simplest approach is to generate
a uniformly distributed random number, y; in
the range ð0oyp2pÞ then to assign f ¼ y:
(Alternatively, if the random number can only be
generated in a limited range, for example
ð0oyp1Þ; then f ðfÞ can be generated by scaling
y i.e. f ¼ y2p:)

4.2. Polar angle

The polar angle can be generated from a single,
uniformly distributed random number, say x; in
the range ð0pxp1Þ:

Following Suetsuga [2], integrating the polar
angular-probability distribution gives

x ¼

R y
0 gðyÞdyR p=2

0 gðyÞdy
¼

R y
0 sin2ydy

1

¼ 1� cos2y ¼ sin2y; ð11Þ

i.e.

y ¼ sin�1ð
ffiffiffi
x

p
Þ: ð12Þ

Thus, a random angle of departure is determined
from a random number.

5. Incorrect interpretation of the cosine distribution

law

The most common misunderstanding associated
with the cosine law arises when it is erroneously

supposed to state that:

the probability of a molecule leaving the surface
within a narrow angle dy; in a direction making
an angle y to the surface normal, is cos y:

The misinterpretation occurs most often when a
system is being modelled in two dimensions. The
traditional schematic representation of the cosine
law for molecules scattered from a surface is
shown in Fig. 2(a). Occasionally this is misinter-
preted as being the polar angular-probability

distribution whereas in fact it is a projection
through the molecular flux distribution. The actual
polar angular-probability distribution is shown in
Fig. 2(b).

The incorrect statement of the cosine law fails to
take into account the three-dimensional nature of
the molecular distribution and the inherent fact
that the solid angle dO between y and yþ dy is a
function of y namely 2psin y dy:

The misinterpretation effectively states that the
polar angular-probability distribution is hðyÞ;
where

hðyÞ ¼ cosy: ð13Þ

This distribution can be generated from a single,
uniformly distributed random number in the range
ð0pxp1Þ by integrating the distribution as
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follows:

x ¼

R y
0 hðyÞdyR p=2

0 hðyÞdy
¼

R y
0 cosydy

1
¼ siny: ð14Þ

Hence, in this case

y ¼ sin�1x ð15Þ

in contrast with the correct result of Eq. (12).
An associated azimuthal angle f ðfÞ is usually

generated using the approach mentioned in
Section 4.

6. The effect of the choice of polar angle generator

on the molecular flux distribution

To see what effect the choice of the polar angle
generator has on the molecular flux distribution

(i.e. on the amount of flux in a particular solid

angle), the angular distribution first needs to be
normalised to take account of the changing solid
angle (as a function of polar angle), i.e.

dnðy; doÞp
pðyÞ
doðyÞ

; ð16Þ

where

do ¼ sinydydf: ð17Þ

For the correct polar distribution pðyÞ ¼ gðyÞ; this
gives

dngðy;doÞp
gðyÞ

sinydydf
¼

2cosysiny
sinydydf

; ð18Þ

i.e.

dngpcosy; ð19Þ

which is the correct cosine distribution as defined
at the beginning of this article.

For the incorrect polar distribution, pðyÞ ¼ hðyÞ;
this gives

dnhðy;doÞp
hðyÞ

sinydydf
¼

cosy
sinydydf

; ð20Þ

i.e.

dnhpcoty: ð21Þ

The distribution due to Eq. (21) is grossly different
from the distribution due to Eq. (19), being very
strongly peaked along the surface normal ðy ¼ 0Þ:

7. Transmission probability for a cylinder

The effect of choosing the incorrect cosine
distribution is demonstrated in the following
example where the transmission probability for
molecular flow in a cylinder has been calculated
for a selection of cylinders with different length to
radius ratio, L=R: In each case, the transmission
probability has been calculated using both the
correct cosine distribution gðyÞ and the incorrect
distribution hðyÞ described above.

The transmission probability is modelled by
computing the trajectories for a number of non-
interacting particles originating in the entrance
plane of the cylinder.

θ

cos θ

θ

sin 2θ

(a)

(b)

Fig. 2. (a) Projection through the cosine distribution of

molecular flux; (b) the polar angular-probability distribution

associated with a cosine distribution of molecular flux.
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7.1. Monte-Carlo model

The starting co-ordinates for each particle are
randomly generated from uniform spatial distribu-
tions. The initial direction of each particle is
determined by randomly selecting an azimuthal
angle (from a uniform distribution) and a polar
angle from the relevant polar angular-probability
distribution where the direction of the normal to
the emitting ‘‘surface’’ is parallel to the axis of the
cylinder. The particle trajectory is then determined.

If a particle passes through the exit plane of the
cylinder, it is defined to have been transmitted. If a
particle intercepts the cylinder boundary, it is
subsequently ‘‘re-emitted’’ from the point of
impact with a new, randomly selected polar angle
(from the relevant angular-probability distribu-
tion) with the emission-normal being perpendicu-
lar to the surface and directed towards the axis of
the cylinder. A new azimuthal angle is also
randomly generated, relative to the new emis-
sion-normal. The trajectory of the particle is then
determined once more.

If a particle passes through the entrance plane of
the cylinder, it is defined to have been reflected; if
it passes through the exit plane, it is defined to
have been transmitted. If the particle intersects the
cylinder boundary again, it is again re-emitted and
its new trajectory is determined. This process is
repeated until the particle is either reflected or
transmitted.

The transmission probability is here defined to
be the ratio of the number of particles that traverse
the exit plane of the cylinder to the number of
particles that are initially generated.

A summary of the calculation conditions is
given in Table 1 and the results are presented in
Fig. 3 which, for comparison, also shows the data
of Cole [3]. (Cole’s data is partly summarised in
Table 2.5, p. 89 of [1] where it is treated as being of
a sufficiently high accuracy that it can be used for
comparing the quality of other results.)

8. Summary

The correct interpretation of the cosine law
distribution for molecular flux results in a sin 2y

polar angular-probability distribution. This dis-
tribution can be generated from uniformly dis-
tributed random numbers in the range ð0pxp1Þ
using the relation y ¼ sin�1ðOxÞ:

Incorrect interpretation of the cosine law
usually arises when it is erroneously supposed to
state that the polar angle-probability distribution
is a cos y distribution. This results in a cot y
distribution for molecular flux, which is very
strongly peaked along the surface normal.

Use of the incorrect polar angle-probability
distribution can produce grossly different results
to those generated with the correct distribution.

The results presented clearly demonstrate the
significant difference between calculations per-
formed using the correct and the incorrect
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Fig. 3. Transmission probability, pðcosÞ and pðcotÞ; for various
cylinders with length to radius ratio, L=R: Results are shown

for Monte-Carlo simulations using the correct (pðcosÞ) and the

incorrect (pðcotÞ) polar angular-probability distributions to-

gether with data due to Cole (pðColeÞ) which was determined

using variational methods. (The lines joining the modelled data

points are given as a visual aid; calculations were only

performed at the identified data points.)
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distributions as well as illustrating an excellent
agreement between the correct cosine distribution
and the results of Cole.
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Table 1

Summary of calculated data for a range of cylinder dimensions

L=R n pðcosÞ sd pðcosÞ pðcotÞ sd pðcotÞ dp% pðcosÞ

0.001 10,000,000 0.99949 0.00001 0.99968 0.00001 0.02

0.01 10,000,000 0.99505 0.00005 0.99680 0.00006 0.18

0.03 10,000,000 0.9853 0.0001 0.9907 0.0001 0.54

0.1 10,000,000 0.9522 0.0002 0.9693 0.0001 1.8

0.3 10,000,000 0.8702 0.0003 0.9148 0.0002 5.1

1 10,000,000 0.6718 0.0005 0.7688 0.0003 14.4

3 10,000,000 0.4183 0.0004 0.5449 0.0004 30

10 1,000,000 0.188 0.001 0.2939 0.0013 56

30 1,000,000 0.076 0.001 0.137 0.001 82

100 10,000 0.025 0.002 0.050 0.002 99

300 10,000 0.011 0.001 0.021 0.001 93

1000 10,000 0.0028 0.0003 0.0083 0.0005 196

L=R is the ratio of cylinder length to radius, n is the total number of particles in the 10 calculation runs made for each cylinder

configuration.

pðcosÞ is the mean transmission probability calculated for 10 runs using the correct cosine distribution gðyÞ (Eq. (3)), sd pðcosÞ is the
standard deviation associated with pðcosÞ: pðcotÞ is the mean transmission probability calculated over 10 runs using an incorrect cosine

distribution hðyÞ (Eq. (4)), sd pðcotÞ is the standard deviation associated with pðcotÞ: dp% pðcosÞ is the difference between pðcotÞ and
pðcosÞ expressed as a percentage of pðcosÞ (calculated from unrounded data).
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