#include "construction.hh" MyDetectorConstruction::MyDetectorConstruction():fRegGasDet(0), fRadRegion(0) { } MyDetectorConstruction::~MyDetectorConstruction() {} G4VPhysicalVolume *MyDetectorConstruction::Construct() { G4String name, symbol; G4double a, z; G4double density, fractionmass; G4int nel, ncomponents; // define Elements a = 1.01*g/mole; G4Element* elH = new G4Element(name="Hydrogen",symbol="H" , z= 1., a); a = 6.94*g/mole; G4Element* elLi = new G4Element(name="Lithium",symbol="Li" , z= 3., a); a = 9.01*g/mole; G4Element* elBe = new G4Element(name="Berillium",symbol="Be" , z= 4., a); // a =19.32*g/mole; // G4Element* elAu = new G4Element(name="Gold",symbol="Au" , z= 79., a); a = 12.01*g/mole; G4Element* elC = new G4Element(name="Carbon", symbol="C", z=6., a); a = 14.01*g/mole; G4Element* elN = new G4Element(name="Nitrogen",symbol="N" , z= 7., a); a = 16.00*g/mole; G4Element* elO = new G4Element(name="Oxygen" ,symbol="O" , z= 8., a); a = 39.948*g/mole; G4Element* elAr = new G4Element(name="Argon", symbol="Ar", z=18., a); /* a = 131.29*g/mole; G4Element* elXe = new G4Element(name="Xenon", symbol="Xe", z=54., a); a = 19.00*g/mole; G4Element* elF = new G4Element(name="Fluorine", symbol="F", z=9., a); */ ////////////// // // Detector windows, electrodes // Al for electrodes density = 2.700*g/cm3; a = 26.98*g/mole; new G4Material(name="Al", z=13., a, density); ///////// // // Materials for popular X-ray TR radiators // // TRT_CH2 density = 0.935*g/cm3; G4Material* TRT_CH2 = new G4Material(name="TRT_CH2",density, nel=2); TRT_CH2->AddElement(elC,1); TRT_CH2->AddElement(elH,2); // Radiator density = 0.059*g/cm3; G4Material* Radiator = new G4Material(name="Radiator",density, nel=2); Radiator->AddElement(elC,1); Radiator->AddElement(elH,2); // Carbon Fiber density = 0.145*g/cm3; G4Material* CarbonFiber = new G4Material(name="CarbonFiber",density, nel=1); CarbonFiber->AddElement(elC,1); // Lithium density = 0.534*g/cm3; G4Material* Li = new G4Material(name="Li",density, nel=1); Li->AddElement(elLi,1); // Beryllium density = 1.848*g/cm3; G4Material* Be = new G4Material(name="Be",density, nel=1); Be->AddElement(elBe,1); // Mylar density = 1.39*g/cm3; G4Material* Mylar = new G4Material(name="Mylar", density, nel=3); Mylar->AddElement(elO,2); Mylar->AddElement(elC,5); Mylar->AddElement(elH,4); // Kapton Dupont de Nemur (density: 1.396-1.430, get middle ) density = 1.413*g/cm3; G4Material* Kapton = new G4Material(name="Kapton", density, nel=4); Kapton->AddElement(elO,5); Kapton->AddElement(elC,22); Kapton->AddElement(elN,2); Kapton->AddElement(elH,10); // Kapton (polyimide) ??? since = Mylar C5H4O2 // density = 1.39*g/cm3; // G4Material* kapton = new G4Material(name="kapton", density, nel=3); // Kapton->AddElement(elO,2); // Kapton->AddElement(elC,5); // Kapton->AddElement(elH,4); // Polypropelene G4Material* CH2 = new G4Material ("CH2" , 0.91*g/cm3, 2); CH2->AddElement(elH,2); CH2->AddElement(elC,1); //////////////////////////// // // Noble gases , STP conditions // Helium as detector gas, STP density = 0.178*mg/cm3; a = 4.0026*g/mole; G4Material* He = new G4Material(name="He",z=2., a, density ); // Neon as detector gas, STP density = 0.900*mg/cm3; a = 20.179*g/mole; new G4Material(name="Ne",z=10., a, density ); // Argon as detector gas, STP density = 1.7836*mg/cm3; // STP G4Material* Argon = new G4Material(name="Argon" , density, ncomponents=1); Argon->AddElement(elAr, 1); // Krypton as detector gas, STP density = 3.700*mg/cm3; a = 83.80*g/mole; G4Material* Kr = new G4Material(name="Kr",z=36., a, density ); // Xenon as detector gas, STP density = 5.858*mg/cm3; a = 131.29*g/mole; G4Material* Xe = new G4Material(name="Xenon",z=54., a, density ); ///////////////////////////////// // // Hydrocarbones, metane and others // Metane, STP density = 0.7174*mg/cm3; G4Material* metane = new G4Material(name="CH4",density,nel=2); metane->AddElement(elC,1); metane->AddElement(elH,4); // Propane, STP density = 2.005*mg/cm3 ; G4Material* propane = new G4Material(name="C3H8",density,nel=2); propane->AddElement(elC,3); propane->AddElement(elH,8); // iso-Butane (methylpropane), STP density = 2.67*mg/cm3; G4Material* isobutane = new G4Material(name="isoC4H10",density,nel=2); isobutane->AddElement(elC,4); isobutane->AddElement(elH,10); ///////////////////////// // // Molecular gases // Carbon dioxide, STP density = 1.977*mg/cm3; G4Material* CO2 = new G4Material(name="CO2", density, nel=2, kStateGas,273.15*kelvin,1.*atmosphere); CO2->AddElement(elC,1); CO2->AddElement(elO,2); // Carbon dioxide, STP density = 1.977*273.*mg/cm3/293.; G4Material* CarbonDioxide = new G4Material(name="CO2", density, nel=2); CarbonDioxide->AddElement(elC,1); CarbonDioxide->AddElement(elO,2); // Nitrogen, STP density = 1.25053*mg/cm3; // STP G4Material* Nitrogen = new G4Material(name="N2" , density, ncomponents=1); Nitrogen->AddElement(elN, 2); // Oxygen, STP density = 1.4289*mg/cm3; // STP G4Material* Oxygen = new G4Material(name="O2" , density, ncomponents=1); Oxygen->AddElement(elO, 2); /* ***************************** density = 1.25053*mg/cm3; // STP a = 14.01*g/mole ; // get atomic weight !!! // a = 28.016*g/mole; G4Material* N2 = new G4Material(name="Nitrogen", z= 7.,a,density) ; density = 1.25053*mg/cm3; // STP G4Material* anotherN2 = new G4Material(name="anotherN2", density,ncomponents=2); anotherN2->AddElement(elN, 1); anotherN2->AddElement(elN, 1); // air made from oxigen and nitrogen only density = 1.290*mg/cm3; // old air from elements G4Materi* air = new G4Material(name="air" , density, ncomponents=2); air->AddElement(elN, fractionmass=0.7); air->AddElement(elO, fractionmass=0.3); ******************************************** */ // Dry Air (average composition with Ar), STP density = 1.2928*mg/cm3 ; // STP G4Material* Air = new G4Material(name="Air" , density, ncomponents=3); Air->AddMaterial( Nitrogen, fractionmass = 0.7557 ); Air->AddMaterial( Oxygen, fractionmass = 0.2315 ); Air->AddMaterial( Argon, fractionmass = 0.0128 ); //////////////////////////////////////////////////////////////////////////// // // MWPC mixtures // 90% Ar + 10% CO2, STP density = 1.802*mg/cm3; G4Material* Ar10CO2 = new G4Material(name="Ar10CO2" , density, ncomponents=2); Ar10CO2->AddMaterial( Argon, fractionmass = 0.891 ); // 1.78*0.9 / density Ar10CO2->AddMaterial( CarbonDioxide, fractionmass = 0.109 ); // 1 - frmAr // 85% Xe + 15% CO2, STP density = 4.9*mg/cm3; G4Material* Xe15CO2 = new G4Material(name="Xe15CO2" , density, ncomponents=2); Xe15CO2->AddMaterial( Xe, fractionmass = 0.979); Xe15CO2->AddMaterial( CarbonDioxide, fractionmass = 0.021); // 80% Xe + 20% CO2, STP density = 5.0818*mg/cm3; G4Material* Xe20CO2 = new G4Material(name="Xe20CO2" , density, ncomponents=2); Xe20CO2->AddMaterial( Xe, fractionmass = 80*perCent ); Xe20CO2->AddMaterial( CarbonDioxide, fractionmass = 20*perCent ); // 70% Xe + 27% CO2 + 3% O2, 20 1 atm ATLAS straw tube mixture density = 4.358*mg/cm3; G4Material* Xe27CO23O2 = new G4Material(name="Xe27CO23O2" , density, ncomponents=3); Xe27CO23O2->AddMaterial( Xe, fractionmass = 0.87671); Xe27CO23O2->AddMaterial( CarbonDioxide, fractionmass = 0.11412); Xe27CO23O2->AddMaterial( Oxygen, fractionmass = 0.00917); // 80% Kr + 20% CO2, STP density = 3.601*mg/cm3; G4Material* Kr20CO2 = new G4Material(name="Kr20CO2", density, ncomponents=2); Kr20CO2->AddMaterial( Kr, fractionmass = 0.89 ); Kr20CO2->AddMaterial( CarbonDioxide, fractionmass = 0.11 ); // Xe + 55% He + 15% CH4 ; NIM A294 (1990) 465-472; STP density = 1.963*273.*mg/cm3/293.; G4Material* Xe55He15CH4 = new G4Material(name="Xe55He15CH4",density, ncomponents=3); Xe55He15CH4->AddMaterial(Xe, 0.895); Xe55He15CH4->AddMaterial(He, 0.050); Xe55He15CH4->AddMaterial(metane,0.055); // 90% Xe + 10% CH4, STP ; NIM A248 (1986) 379-388 density = 5.344*mg/cm3; G4Material* Xe10CH4 = new G4Material(name="Xe10CH4" , density, ncomponents=2); Xe10CH4->AddMaterial( Xe, fractionmass = 0.987 ) ; Xe10CH4->AddMaterial( metane, fractionmass = 0.013 ) ; // 95% Xe + 5% CH4, STP ; NIM A214 (1983) 261-268 density = 5.601*mg/cm3; G4Material* Xe5CH4 = new G4Material(name="Xe5CH4" , density, ncomponents=2); Xe5CH4->AddMaterial( Xe, fractionmass = 0.994 ); Xe5CH4->AddMaterial( metane, fractionmass = 0.006 ); // 80% Xe + 20% CH4, STP ; NIM A253 (1987) 235-244 density = 4.83*mg/cm3; G4Material* Xe20CH4 = new G4Material(name="Xe20CH4" , density, ncomponents=2); Xe20CH4->AddMaterial( Xe, fractionmass = 0.97 ); Xe20CH4->AddMaterial( metane, fractionmass = 0.03 ); // 93% Ar + 7% CH4, STP ; NIM 107 (1973) 413-422 density = 1.709*mg/cm3; G4Material* Ar7CH4 = new G4Material(name="Ar7CH4" , density, ncomponents=2); Ar7CH4->AddMaterial( Argon, fractionmass = 0.971 ); Ar7CH4->AddMaterial( metane, fractionmass = 0.029 ); // 93% Kr + 7% CH4, STP ; NIM 107 (1973) 413-422 density = 3.491*mg/cm3; G4Material* Kr7CH4 = new G4Material(name="Kr7CH4" , density, ncomponents=2); Kr7CH4->AddMaterial( Kr, fractionmass = 0.986 ); Kr7CH4->AddMaterial( metane, fractionmass = 0.014 ); // 0.5*(95% Xe + 5% CH4)+0.5*(93% Ar + 7% CH4), STP ; NIM A214 (1983) 261-268 density = 3.655*mg/cm3; G4Material* XeArCH4 = new G4Material(name="XeArCH4" , density, ncomponents=2); XeArCH4->AddMaterial( Xe5CH4, fractionmass = 0.766 ); XeArCH4->AddMaterial( Ar7CH4, fractionmass = 0.234 ); // Silicon as detector material density = 2.330*g/cm3; a = 28.09*g/mole; new G4Material(name="Si", z=14., a, density); density = 19.32*g/cm3; a = 196.97*g/mole; new G4Material(name="Au", z= 79., a, density); density = 2.700*g/cm3; a = 26.98*g/mole; new G4Material(name="Al", z=13., a, density); density =7.87*g/cm3; a = 55.85*g/mole; new G4Material(name="Iron", z=26., a,density); density =700.87*g/cm3; a = 55.85*g/mole; new G4Material(name="IronAll", z=26., a,density); G4int natoms; // a = 16.00*g/mole; // G4Element* elO = new G4Element(name="Oxygen" ,symbol="O" , z= 8., a); a = 183.84*g/mole; G4Element* elW = new G4Element(name="Tungsten" ,symbol="W", z=74., a); a = 207.20*g/mole; G4Element* elPb = new G4Element(name="Lead" ,symbol="Pb", z=82., a); density = 8.280*g/cm3; G4Material* PbWO4= new G4Material(name="PbWO4", density, ncomponents=3); PbWO4->AddElement(elO , natoms=4); PbWO4->AddElement(elW , natoms=1); PbWO4->AddElement(elPb, natoms=1); // a = 16.00*g/mole; G4Element* elO = new G4Element(name="Oxygen" ,symbol="O" , z= 8., a); a = 137.33*g/mole; G4Element* elBa = new G4Element(name="Barium" ,symbol="Ba", z=56., a); a = 28.09*g/mole; G4Element* elSi = new G4Element(name="Silicone" ,symbol="Si", z=14., a); density = 3.8*g/cm3; G4Material* DSBCe= new G4Material(name="DSBCe", density, ncomponents=3); DSBCe->AddElement(elO , natoms=5); DSBCe->AddElement(elBa , natoms=1); DSBCe->AddElement(elSi, natoms=2); G4NistManager* man = G4NistManager::Instance(); G4Element* C = man->FindOrBuildElement("C"); G4Element* Si = man->FindOrBuildElement("Si"); G4Element* Cr = man->FindOrBuildElement("Cr"); G4Element* Mn = man->FindOrBuildElement("Mn"); G4Element* Fe = man->FindOrBuildElement("Fe"); G4Element* Ni = man->FindOrBuildElement("Ni"); G4Material* StainlessSteel = new G4Material("StainlessSteel", density= 8.06*g/cm3, ncomponents=6); StainlessSteel->AddElement(C, fractionmass=0.001); StainlessSteel->AddElement(Si, fractionmass=0.007); StainlessSteel->AddElement(Cr, fractionmass=0.18); StainlessSteel->AddElement(Mn, fractionmass=0.01); StainlessSteel->AddElement(Fe, fractionmass=0.712); StainlessSteel->AddElement(Ni, fractionmass=0.09); // density = 1e-25*cm3/g; //AddMaterial("G4_Galactic", density, 1, 21.8); G4Material* empty = man->FindOrBuildMaterial("G4_Galactic"); //###################### Material for Radiator###################################### // Preparation of mixed radiator material G4cout <<"G4Material* CH2 = "<AddMaterial( CH2, fractionFoil ) ; radiatorMat0->AddMaterial( Air, fractionGas ) ; G4double NewDensity = 0.083*(g/cm3); G4Material* radiatorMat = new G4Material("radiatorMat",NewDensity,1); radiatorMat->AddMaterial(radiatorMat0, 1.) ; G4cout<<"new Rad with totDensity = "<GetDensity(); G4cout<<"Read back Rad totDensity = "<FindOrBuildMaterial("G4_AIR"); G4Material* absorberSi = nist->FindOrBuildMaterial("G4_Si"); G4Box* solidWorld = new G4Box("World", //its name 100*cm, 100*cm, 100*cm); //its size G4LogicalVolume* logicWorld = new G4LogicalVolume(solidWorld, //its solid world_mat, //its material "World"); //its name G4VPhysicalVolume* physWorld = new G4PVPlacement(0, //no rotation G4ThreeVector(0.,0.,0.), //at (0,0,0) logicWorld, //its logical volume "World", //its name 0, //its mother volume false, //no boolean operation 0, //copy number checkOverlaps); //overlaps checking //Radiator G4Box* solidEnv = new G4Box("Envelope", //its name 7.5*cm,7.5*cm,7.5*cm); //its size G4LogicalVolume* fLogicRadiator = new G4LogicalVolume(solidEnv, //its solid fRadiatorMat, //its material "Envelope"); //its name new G4PVPlacement(0, //no rotation G4ThreeVector(0.,0.,7.5*cm), //at (0,0,0) fLogicRadiator, //its logical volume "Envelope", //its name logicWorld, //its mother volume false, //no boolean operation 1, //copy number checkOverlaps); //overlaps checking fRadRegion = new G4Region("XTRradiator"); fRadRegion->AddRootLogicalVolume(fLogicRadiator); //Absorber(GEM) G4Box* solidGem = new G4Box("gem", //its name 10*cm,10*cm,1.5*cm); //its size (earlier 4cm) logicGem = new G4LogicalVolume(solidGem, //its solid Xe20CO2, //its material "gem"); //its name fAbsorberPV=new G4PVPlacement(0, //no rotation G4ThreeVector(0.,0.,16.5*cm), //at (0,0,0) logicGem, //its logical volume "gem", //its name logicWorld, //its mother volume false, //no boolean operation 2, //copy number checkOverlaps); //overlaps checking fRegGasDet = new G4Region("XTRdEdxDetector"); fRegGasDet->AddRootLogicalVolume(logicGem); //G4double maxStep = 0.1*mm; //G4double maxTime = 100.*s; //G4UserLimits* stepLimit = new G4UserLimits(maxStep,DBL_MAX,maxTime); //logicGem->SetUserLimits(stepLimit); fScoringVolume=logicGem; return physWorld; } void MyDetectorConstruction::ConstructSDandField() { G4SDManager *sdman=G4SDManager::GetSDMpointer(); MySensitiveDetector* sensDet = new MySensitiveDetector("SensitiveDetector"); sdman->AddNewDetector(sensDet); logicGem->SetSensitiveDetector(sensDet); }